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Given that f(z) = VZ® — 22 + 2. [4 pts]

(a) Show that f is one-to-one in the interval [0, 00).
(b) Find (f71)'(1).

. Find the derivative of y = tan—}(z e~%) + In [(3% + 1) (2 + cos z)]. [4 pts]
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Evaluate the improper integral f@ ;’z; dz if it converges. {3 pts]
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The curve y = > ik 2 < T < 4, is rotated about the z-axis. Find the area of the
resulting surface. {4 pts]
. Find the centroid of the region bounded by the curves y = 2°, z +y = 2, and z=0.

[4 pts]
Sketch the graphs of the polar equations r = 3 - 3sinf and r = 1 +sinf, and find the
area of the region that lies inside both graphs. [6 pts]

A curve C is given by the parametric equations £ = sint + cost and y = sin¢ — cost,
where -7 <t < «. 6 pts]

(a) Find the points P(z,y) on C where it has horizontal or vertical tangent lines.
(b) Find the length of the curve C.



SOLUTIONS

Calculus B Final Exam Summer 2008

1. Given that f(z) =23 — 2% + z. [4 pts]

(a) Show that f is one-to-one in the interval [0, 00).
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Fay= et LB R 50, 50
(b) Find {f~1)'(1). By inspection, f{1} = 1 so that f/(1) = 1 and
(1) = g = 1
1
2. Find the derivative of y = tan™!{z e~} + In [(3% + 1) (2 + cos z)]. [4 pt]
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3. Evaluate f cohs 1%
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6. Evaluate the improper integral f 2L gz ifit converges. Integrate by parts: [3 pts|
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The curve y = % — nT » 2 < <4, is rotated about the z-axis. Find the area of the resulting

surface. [4 pts]
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. Find the centroid of the region bounded by the curves y=2*, z +y =2, and 2z =10.  [4 pts

Intersection point: 2% = 2~ gives £ = 1. The line ¥+ z = 2 lies above the curve y = 22 in the
first quadrant between the lines # = 0 and 2 = 1. The area of the region is
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and the moments are:
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which give the centroid:
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. Sketch the graphs of the polar equations r = 3 — 3sin® and 7 = 1 +sin @, and find the area of

the region that lies inside both graphs. [6 pts]
Due to symmetry, we need one intersection point in the first quadrant: 1 +sinff =3 — 3 sind
which gives sin® = 1/2, so that # = x/6. The area becomes
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A curve C' is given by the parametric equations = = sinf + cost and y = sint — cost, where
r<t<T. [6 pts]

(a) Find the points P(x,y) on € where it has horizontal or vertical tangent lines.

dy _ dy/dt _ cost+sint _ 14 tant

“dz  dz/dt  cost—sing 1-—tant

Horizontal tangent line: 1+ tant = § ocours at ¢ = —x/4,37/4, that is at P(0, Fv2).
Vertical tangent line: 1 —tant =0 ocours at ¢t = w/4, —3w/4, that is at P(++/2,0).

(b) Find the length of the curve C.
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