KUWAIT UNIVERSITY

Department of Mathematics & Computer Science

Math 102 Calculus II

Final Exam

Aug 2, 2008 Time: 120 minutes

No calculators or cell phones are permitted during the exam

1. Given that
$$f(x) = \sqrt{x^3 - x^2 + x}$$
.

[4 pts]

- (a) Show that f is one-to-one in the interval $[0, \infty)$.
- (b) Find $(f^{-1})'(1)$.

2. Find the derivative of
$$y = \tan^{-1}(x e^{-x}) + \ln[(3^x + 1)(2 + \cos x)]$$
.

[4 pts]

3. Evaluate
$$\int \frac{1}{\cosh x - 1} dx$$
.

[3 pts]

4. Evaluate
$$\int \frac{1}{x^5 + x} dx$$
.

[3 pts]

5. Find
$$\lim_{x\to\infty} \left(\frac{x+2}{x-1}\right)^x$$
.

[3 pts]

6. Evaluate the improper integral
$$\int_0^\infty \frac{x}{e^x} dx$$
 if it converges.

[3 pts]

7. The curve
$$y = \frac{x^2}{2} - \frac{\ln x}{4}$$
, $2 \le x \le 4$, is rotated about the x-axis. Find the area of the resulting surface. [4 pts]

8. Find the centroid of the region bounded by the curves
$$y = x^3$$
, $x + y = 2$, and $x = 0$.

[4 pts]

9. Sketch the graphs of the polar equations
$$r = 3 - 3\sin\theta$$
 and $r = 1 + \sin\theta$, and find the area of the region that lies inside both graphs. [6 pts]

10. A curve C is given by the parametric equations
$$x = \sin t + \cos t$$
 and $y = \sin t - \cos t$, where $-\pi \le t \le \pi$.

(a) Find the points
$$P(x, y)$$
 on C where it has horizontal or vertical tangent lines.

(b) Find the length of the curve C.

- 1. Given that $f(x) = \sqrt{x^3 x^2 + x}$. [4 pts]
 - (a) Show that f is one-to-one in the interval $[0, \infty)$.

$$f'(x) = \frac{3x^2 - 2x + 1}{2\sqrt{x^3 - x^2 + x}} = \frac{3}{2} \frac{(x - 1/3)^2 + 2/9}{\sqrt{x^3 - x^2 + x}} > 0, \quad x > 0$$

(b) Find $(f^{-1})'(1)$. By inspection, f(1) = 1 so that f'(1) = 1 and

$$(f^{-1})'(1) = \frac{1}{f'(1)} = 1$$

2. Find the derivative of $y = \tan^{-1}(x e^{-x}) + \ln[(3^x + 1)(2 + \cos x)]$. [4 pts]

$$y = \tan^{-1}(xe^{-x}) + \ln(3^x + 1) + \ln(2 + \cos x) \rightarrow y' = \frac{e^{-x} - xe^{-x}}{1 + x^2e^{-2x}} + \frac{3^x \ln 3}{3^x + 1} - \frac{\sin x}{2 + \cos x}$$

3. Evaluate $\int \frac{1}{\cosh x - 1} dx$. [3 pts]

$$\int \frac{\cosh x + 1}{\cosh^2 x - 1} dx = \int \frac{\cosh x + 1}{\sinh^2 x} dx = \int (\coth x \operatorname{csch} x + \operatorname{csch}^2 x) dx = -(\operatorname{csch} x + \coth x) + c$$

OF

$$\int \frac{1}{\cosh x - 1} \, dx = \int \frac{2}{e^x + e^{-x} - 2} \, dx = \int \frac{2 \, e^x}{e^{2x} + 1 - 2 \, e^x} \, dx = \int \frac{2 \, e^x}{(e^x - 1)^2} \, dx = \frac{-2}{e^x - 1} + c$$

4. Evaluate $\int \frac{1}{x^5 + x} dx$. Put $u = x^4$ [3 pts]

$$\int \frac{1}{x\left(x^4+1\right)} \, dx = \frac{1}{4} \int \frac{4x^3}{x^4 \left(x^4+1\right)} \, dx = \frac{1}{4} \int \frac{du}{u\left(u+1\right)} = \frac{1}{4} \int \left[\frac{1}{u} - \frac{1}{u+1}\right] \, du = \frac{1}{4} \ln \frac{u}{u+1} + c$$

5. Find $\lim_{x \to \infty} \left(\frac{x+2}{x-1} \right)^x$, $y = \left(\frac{x+2}{x-1} \right)^x$ [3 pts]

$$\ln y = x \left(\ln(x+2) - \ln(x-1) \right) = \frac{\ln(x+2) - \ln(x-1)}{1/x} \rightarrow \lim \ln y = \lim \frac{1/(x+2) - 1/(x-1)}{-x^{-2}}$$

$$\lim \ln y = \lim \frac{3x^2}{(x+2)(x-1)} = 3 \rightarrow \lim y = e^3$$

6. Evaluate the improper integral $\int_0^\infty \frac{x}{e^x} dx$ if it converges. Integrate by parts: [3 pts]

$$\lim_{t \to \infty} \int_0^t x \, e^{-x} \, dx = \lim_{t \to \infty} -e^{-x} \left(x + 1 \right) \Big|_0^t = \lim_{t \to \infty} -\frac{t+1}{e^t} + 1 = 1$$

7. The curve $y = \frac{x^2}{2} - \frac{\ln x}{4}$, $2 \le x \le 4$, is rotated about the x-axis. Find the area of the resulting surface. [4 pts]

$$y' = x - \frac{1}{4x} \rightarrow (y')^2 + 1 = x^2 - \frac{1}{2} + \frac{1}{16x^2} + 1 = x^2 + \frac{1}{2} + \frac{1}{16x^2} = \left(x + \frac{1}{4x}\right)^2$$

$$S = \int_2^4 2\pi y \sqrt{1 + (y')^2} \, dx 2\pi \int_2^4 \left(\frac{x^2}{2} - \frac{\ln x}{4}\right) \left(x + \frac{1}{4x}\right) dx = 2\pi \int_2^4 \left(\frac{x^3}{2} + \frac{x}{8} - \frac{x \ln x}{4} - \frac{\ln x}{16x}\right) dx$$

$$S = \frac{\pi}{4} \left[x^4 + x^2 - x^2 \ln x - \frac{(\ln x)^2}{4}\right]_2^4 = \cdots$$

8. Find the centroid of the region bounded by the curves $y = x^3$, x + y = 2, and x = 0. [4 pts] Intersection point: $x^3 = 2 - x$ gives x = 1. The line y + x = 2 lies above the curve $y = x^3$ in the first quadrant between the lines x = 0 and x = 1. The area of the region is

$$A = \int_0^1 (2 - x - x^3) \, dx = \frac{5}{4}$$

and the moments are:

$$M_x = \rho \int_0^1 \frac{1}{2} \left((2-x)^2 - x^5 \right) dx = \frac{23}{21} \rho, \quad M_y = \rho \int_0^1 x (2-x-x^3) dx = \frac{7}{15} \rho$$

which give the centroid:

$$\bar{x} = \frac{M_y}{\rho A} = \frac{28}{75}, \quad \bar{y} = \frac{M_x}{\rho A} = \frac{92}{105}$$

9. Sketch the graphs of the polar equations $r=3-3\sin\theta$ and $r=1+\sin\theta$, and find the area of the region that lies inside both graphs. [6 pts]

Due to symmetry, we need one intersection point in the first quadrant: $1 + \sin \theta = 3 - 3 \sin \theta$ which gives $\sin \theta = 1/2$, so that $\theta = \pi/6$. The area becomes

$$A = 2\left[\int_{-\pi/2}^{\pi/6} \frac{1}{2} (1 + \sin \theta)^2 d\theta + \int_{\pi/6}^{\pi/2} \frac{1}{2} (3 - 3\sin \theta)^2 d\theta\right] = \dots = \frac{11}{2} \pi - 9\sqrt{3}$$

- 10. A curve C is given by the parametric equations $x = \sin t + \cos t$ and $y = \sin t \cos t$, where $-\pi \le t \le \pi$. [6 pts]
 - (a) Find the points P(x, y) on C where it has horizontal or vertical tangent lines.

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t + \sin t}{\cos t - \sin t} = \frac{1 + \tan t}{1 - \tan t}$$

Horizontal tangent line: $1 + \tan t = 0$ occurs at $t = -\pi/4$, $3\pi/4$, that is at $P(0, \mp \sqrt{2})$. Vertical tangent line: $1 - \tan t = 0$ occurs at $t = \pi/4$, $-3\pi/4$, that is at $P(\pm \sqrt{2}, 0)$.

(b) Find the length of the curve C.

$$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = (\cos t - \sin t)^2 + (\cos t + \sin t)^2 = 2$$

$$L = \int_{-\pi}^{\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_{-\pi}^{\pi} \sqrt{2} dt = 2\sqrt{2} \pi$$